Dynamic modeling of multimode resonance measuring mode in atomic-force microscopy with piezoresistive, self-actuating cantilevers

Автор: Marinushkin Pavel S., Levitskiy Alexey A., Ivanov Tzvetan, Rangelow Ivo W.

Журнал: Журнал Сибирского федерального университета. Серия: Техника и технологии @technologies-sfu

Статья в выпуске: 6 т.11, 2018 года.

Бесплатный доступ

The development of fast, qualitative and quantitative material characterization methods is one of the most important current issues in the field of nanosystems metrology. On this evidence it seems to be important to conduct a research on the capabilities of multimode resonance imaging mode in atomic-force microscopy (AFM) that allows broadening AFM capabilities in quality of nanonscale structures metrology and nano-object image quantitative analysis. The subject of this paper is modeling of physical phenomena that arise during the creation of such systems that describes coherent mechanic and electric phenomena in self-sensing and self-actuating cantilevers operating in multi-frequency resonance mode. The outcome of the research is represented by a virtual dynamic AFM model that allows understanding the signal generation process in AFM control and measuring circuits during sample scanning in multi-frequency mode.


Atomic force microscope (afm), nano- and microelectromechanical systems (nems/ mems), nanometrology, self-actuating and self-sensing cantilever, thermomechanical actuation

Короткий адрес: https://readera.ru/146279381

IDR: 146279381   |   DOI: 10.17516/1999-494X-0082

Список литературы Dynamic modeling of multimode resonance measuring mode in atomic-force microscopy with piezoresistive, self-actuating cantilevers

  • Binnig G. Atomic force microscope and method for imaging surfaces with atomic resolution, U.S. Patent No. 4, 724, 318 (4 August 1986).
  • Binnig G., Quate C. F., Gerber C. Atomic force microscope, Phys. Rev. Lett, 1986, 56, 930 DOI: 10.1103/PhysRevLett.56.930
  • Binnig G., Rohrer H., Gerber C., Weibel E. Tunneling through a controllable vacuum gap, Appl. Phys. Lett, 1982, 40, 178 DOI: 10.1063/1.92999
  • Bowen W. R., Hilal N. Atomic force microscopy in process engineering. An introduction to AFM for improved processes and products, Butterworth-Heinemann, 2009. 290 p.
  • Rodriguez T., Garcia R. Compositional mapping of surfaces in atomic force microscopy by excitation of the second normal mode of the microcantilever, Appl. Phys. Lett, 2004, 84, 449-451.
  • Proksch R. Multifrequency, repulsive-mode amplitude-modulated atomic force microscopy, Appl. Phys. Lett, 2006, 89, 113-121.
  • Martinez N. F., Patil S., Lozano J. R., Garcia R. Enhanced compositional sensitivity in atomic force microscopy by the excitation of the first two flexural modes, Appl. Phys. Lett, 2006, 89, 153-115.
  • Kawai S., Glatzel T., Koch S., Such B., Baratoff A., Meyer E. Systematic achievement of improved atomic-scale contrast via bimodal dynamic force microscopy, Phys. Rev. Lett, 2009, 103 (22): 220-801 DOI: 10.1103/PhysRevLett.103.220801
  • Viani M. B., Schaffer T. E., Chand A., Rief M., Gaub H. E., Hansma P. K. Small cantilevers for force spectroscopy of single molecules, J. Appl. Phys, 1999, 86, 22-58 DOI: 10.1063/1.371039
  • Ebeling D., Eslami B., Solares S. Visualizing the subsurface of soft matter: simultaneous topographical imaging, depth modulation, and compositional mapping with triple frequency atomic force microscopy, ACS Nano, 2013, 7, 10387-10396.
  • Santos S. Enhanced sensitivity and contrast with bimodal atomic force microscopy with small and ultra-small amplitudes in ambient conditions, Appl. Phys. Lett, 2013, 103, 231-603 DOI: 10.1063/1.4840075
  • Damircheli M., Payam A., Garcia R. Optimization of phase contrast in bimodal amplitude modulation AFM, Beilstein J. Nanotechnol, 2015, 6, 1072-1081.
  • Garcia R., Proksch R. Nanomechanical mapping of soft matter by bimodal force microscopy, European Polymer Journal, 2013, 49, 1897-1906.
  • Herruzo E., Perrino A., Garcia R. Fast nanomechanical spectroscopy of soft matter, Nature Communications, 2014, 5 DOI: 10.1038/ncomms4126
  • Rangelow I. W., Skocki S., Dumania P. Plasma etching for micromechanical sensor applications, Microelectron. Eng, 1994, 23, 365-368.
  • Linnemann R., Gotszalk T., Hadjiiski L., Rangelow I. W. Characterization of a Cantilever With an Integrated Deflection Sensor, Thin Solid Films, 1995, 264 (2), 159-164 DOI: 10.1016/00406090(94)05829-6
  • Pedrak R., Ivanov Tzv., Ivanova K., Gotszalk T., Abedinov N., Rangelow I. W. Micromachined atomic force microscopy sensor with integrated piezoresistive sensor and thermal bimorph actuator for high-speed tapping-mode atomic force microscopy phase-imaging in higher eigenmodes, J. Vac. Sci. Technol., 2003, B 21, 3102 DOI: 10.1116/1.1614252
  • Universal, active AFM Cantilever (AFM-CL) Piezoresistive probes with direct-driven actuation (RDD’s). Access: http://www.nanoanalytik.net/afm-canti.html
  • Chu W.-H., Mehregany M., Mullen R. L., Analysis of tip deflection and force of a bimetallic cantilever microactuator, Journal of Micromechanics and Microengineering, 1993, 3 (1) DOI: 10.1088/0960-1317/3/1/002
  • Gryzagoridis J., Oliver G., Findeis D. On the equivalent flexural rigidity of sandwich composite panels. Insight 2015, 57, 140-143.
  • Derjaguin B. V., Muller V. M., Toropov Yu. P. Effect of contact deformations on the adhesion of particles, J. Colloid. Interface Sci, 1975, 53 (2), 314-326.
  • Kaajakari V. Practical MEMS: Design of microsystems, accelerometers, gyroscopes, RF MEMS, optical MEMS, and microfluidic systems. Las Vegas: Small Gear Publishing, 2009. 484 p.
Статья научная